Emerging applications of probiotics: Antimicrobial resistance

Dr Deepak. B. Rawool, Ph.D.

Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar Email: <u>deepak.rawool@yahoo.com</u>

1920

Antibiotic resistance: A lost clue may be a solution!

1970

2010

he discovery dates of distinct classes of antibiotics. No new classes have been discovered since 1987.

1950

1960

2000

1990

(https://resistancemap.cddep.org

Refilling antibiotic pipeline is one of the most pressing needs

1980

1930

1940

A Visionary accurately predicted today's calamity !!

The time may come when penicillin can be <u>bought by anyone</u> in the shops. Then there is the danger that the <u>ignorant man may easily under dose himself</u> and by <u>exposing his microbes to non- lethal quantities of the drug</u> make them **resistant**

(Sir Alexander Fleming's Nobel Prize Lecture, 11.12.1945)

Facts and Figures of AMR

 \checkmark Whole human and animal might face new MDR epidemics at 2050

✓ GLASS –suspect antibiotic resistance infection among 5,00,000 people across 22 countries (WHO, 2018)

- ✓ In USA and Europe, over 50,000 people die every year by antibiotic resistance infection (Elena Villanueva , 2017)
- ✓ In **INDIA** almost 60,000 newborn babies die every year by antibiotic resistance infection
- ✓ Global antibiotic consumption in livestock In 2010: 63,200 tons

(Laxminarayan *et al.*, 2016) 105,600 tons by 2030

(van Boeckel et al., 2015)

(Hay et al., 2018)

 ✓ "Antimicrobial resistance is a global health emergency that will seriously threaten progress in modern medicine" - Tedros A. Ghebreyesus, DG., WHO

AMR: Effects on Public Health

- ✓ Increased morbidity
- ✓ Prolonged illness
- ✓ Higher mortality rates

Greater risk of complications

- Antibiotic induced diarrhoea
- Mottled teeth
- Gastritis

Deaths attributable to antimicrobial resistance every year compared to other major causes of death

Source: Review on Antimicrobial Resistance 2014

- ✓ Loss of effectiveness of antimicrobials
- ✓ Increased *mortality and morbidity*
- ✓ *Decrease in productivity and economy* in food animals
- ✓ Spread of resistance *food security problem* negative effects on public health
- \checkmark Potential spread of bacteria and resistance genes from animals-humans

AMR: Effects on Animals

Factors Driving Antibiotic Resistance in India

Antibiotic consumption in humans

- India
- China and the United States

Social factors

- Self-medication,
- Antibiotics without prescription,
- he Informal healthcare,
 - Cultural events (Mass pilgrims)
- Antibiotic consumption in food animals
- 4th largest consumer of antibiotics in animals by 2030

Environmental Sanitation World Bank > **50%** of the Indian population not access to sanitation facilities

Health care Settings HAI burden

- Global: 7% to 12% of the
- India- Ranges from 11% to 83%

Antibiotic resistance: Transmission

STATUS OF AMR IN INDIA

ANTIBIOTIC RESISTANCE THREAT IS REAL AND LOOMING

WHAT IS IT?

Misuse of antibiotics has sped up the natural process of resistance. As a result some antibiotics are now useless. And we have created "superbugs" that aren't deterred by any drug

INDIA UNDER SUPERBUG THREAT

Out of every **10 patients** with infection in ICU, 4 have drug resistant bacteria Out of every **10 patients**, **2-3** have drug resistant bacteria, making recovery difficult, and increase treatment costs

TOI

Why India needs to worry more

In 2010 India was world's **largest** consumer of antibiotics

Antibiotic units consumed:
 India 12.9x 109 units
 China 10x109 units
 US 6.8x109 units

sumed: India already has ts cases resistant to **Colistin**, a drug used when all antibiotics fail

Consuming antibiotic resistance livestock can affect bacterial flora in the human body and create a bacterial strain that is resistant to available antibiotics.

Mild infections will need stronger dosage, and treating diseases like tuberculosis (TB), pneumonia and sepsis are getting tougher.

Steroids can lead to unnecessary weight gain and suppress the human immune system.

Bacteria that have become resistant to antibiotics can cause urinary tract infections, eye and ear infections.

WHY THE DANGER?

• Overuse of antibiotic kills the good bacteria in people's bodies, weakening immune systems. This means more people get sick and stay sick for longer

• **Experts warn** we are at the "dawn of a post-antibiotic era", a "catastrophic threat" on a par with terrorism

TOI

• When antibiotics stop working certain procedures will be extremely dangerous, some **diseases will become incurable...**

Antibiotic resistance (AMR) to be a leading cause of death by 2050

Antibiotic consumption... Trends in India (2000–2015)

(DBT Scoping Report on AMR in India, 2017)

Antimicrobial resistance in India: Humans

Carbapenem (meropenem/imipenem) resistance among various bacteria isolated from blood culture

(DBT Scoping Report on AMR in India, 2017)

- Mastitic Cattle
 - ✤ NDM-1 and ESBL producing Gram-negative bacteria
 - Vancomycin-resistant Staphylococcus aureus (VRSA)
- Pig faecal samples
 - ♦ ESBL-producing *E. coli*
- Chicken meat samples
 - Multi-drug resistant Salmonella

(Ghatak *et al.*, 2013; Das *et al.*, 2017) (Bhattacharyya *et al.*, 2016)

(Lalzampuia et al., 2013; Samanta et al., 2015)

(Naik et al., 2015)

Antimicrobial resistance in India: Aquaculture

• ESBL producing *Enterobacteriaceae* isolates (42%) from the gut of tilapia fish

(Marathe et al., 2016)

(Sudha et al., 2014)

• *Vibrio* species from retail markets in Kerala were *100% resistant to ampicillin*

compounds

Antibiotic alternatives: What we need ?

WHO:- Global Action Plan

Alternatives to antibiotics

 Phage therapy
 Natural/engineered viruses attack & kills bacteria

Lysins

Enzymes directly & quickly act on bacteria

Antimicrobial peptides

Small biological molecules, broad spectrum of activity

Probiotics

Prevent colonization of pathogenic bacteria

Vaccine/antibody Binds to MO and kill them

Predatory bacteria

Bacteria eat others of their kind

Herbs

Act synergistically with drugs, inactivate enzymes & inhibit efflux pumps

Nanoparticles

4 Act synergistically with
AMC

Probiotics

"Live bacteria which when administered in adequate amounts confers a health

benefit to the host" - WHO

Characteristic of probiotic microbes:

- Gastric acid and bile resistant
- **4** Adhere to intestinal epithelial cells
- **4** Grow fast & colonize the intestinal tract
- Stabilize the intestinal microflora
- Non-pathogenicity

Natural sources of probiotics

Curd

Sauerkraut

Kimchi

Coconut Kefir

Natto

Yogurt

Kvass

Miso

kombucha

Raw cheese

Kefir (https://draxe.com/probiotics-benefits-foods-supplements)

Mechanism of action of probiotics

Four different methods of protecting probiotics from the intestines against known diseases

Probiotics compete against pathogens for essential nutrients and are less likely to be used for pathogens (a); They attach to adhesion sites and reduce pathogen dependence by reducing the available ground surface for pathogenic colonization (b); Signaling of immune cells by probiotics leads to secretion of cytokines and targeting the pathogen for destruction (c); Ultimately, probiotics with direct bacterial release of bacteriocins (d)

Growth inhibitory product produced by probiotic bacteria and Mechanism of inhibition on target microorganism

Inhibitory Product	Mechanism of action
Lactic acid, propionic acid, Butyric acid	Disruption of metabolism
Hydrogen peroxide	Inactivation of essential biomolecules, Induce lactoperoxidase system
Carbon dioxide	Creates anaerobic environment, inhibit decarboxylation
Diacetyl	Interferers with arginine utilization
Bacteriocins, Nicin, Pediocins, Pediocins Ach, Leucocin, helveticin, Carnobacteriocin, reuterin, Subtilicin, Colicin etc.	Broad and narrow spectrum activity against membrane and membrane structures; membrane lysis, disruption of receptors.
	(Mishra and Lambert, 1996)

Medical applications in humans for different classes of probiotics

Medical condition	Class(es) of probiotic	Reference(s)
Lactose maldigestion	LAB and Streptococcus salivarius subsp. thermophilus	(Savaiano <i>et al.</i> , 1984; Kolars <i>et al.</i> , 1984)
Gastroenteritis Acute diarrhea	LAB, Bifidobacterium species, or Saccharomyces boulardii	Allen <i>et al.</i> , 2003
Antibiotic-associated diarrhea	LAB or <i>S. boulardii</i>	(Cremonini et al., 2002)
Traveler's diarrhea	LAB	(Hilton <i>et al.</i> , 1997)
Allergies	LAB	(Rautava <i>et al.</i> , 2002)
Clostridium difficile-induced colitis	LAB	(Bennett et al., 1996)
Dental caries	LAB	(Nase <i>et al.</i> , 2001)
Intestinal inflammation in children with cystic fibrosis	LAB	(Bruzzese et al., 2004)
Respiratory infection in children	LAB	(Hatakka <i>et al.</i> , 2001)
Nasal colonization with pathogens	LAB	(Gluck and Gebbers, 2003)
Inflammatory bowel disease or irritable bowel syndrome	LAB and <i>Bifidobacterium</i> spp., <i>S. boulardii</i> and drug, <i>S. boulardii</i> alone, or LAB alone	(Guslandi <i>et al.</i> , 2000; Brigdi <i>et al.</i> , 2001)

Master Programme study

Objective:

To study *antimicrobial effects of probiotics* on multi-drug resistant Enteroaggregative *Escherichia coli* (MDR-EAEC) field isolates.

> **Probiotics evaluated were:** Lactobacillus plantarum Lactobacillus acidophilus

Work Plan

In vitro effects of Lactobacillus plantarum / Lactobacillus acidophilus on MDR- EAEC

Post inoculation aliquots – for enumeration of MDR-EAEC at specified time periods

TECHNICAL PROGRAMME

***** Bacterial enumeration:

- The aliquots of test and control cultures were drawn at 0 h, 3 h, 6 h, 12 h, 24 h, 48 h, 72 h and 96 h post inoculation
- EMB agar plates will be used as selective media for enumerating the total count of MDR-EAEC at each time point (Miles and Misra,1938)

The bacterial count will be expressed in cfu/ml.

(Contd..)

L. acidophilus @10¹⁰ cfu was most effective in inhibiting the growth of all the three MDR-EAEC isolates in 72 h

(Contd..)

(c) Synergistic antimicrobial effects of *Lactobacillus* spp. (*L. plantarum* and *L. acidophilus*) against MDR-EAEC

Group 1: 1 x 10⁷ cfu of MDR-EAEC + L. plantarum (1x 10¹⁰ cfu) + L. acidophilus (1x 10¹⁰ cfu)

Group 2: 1 x 10⁷ cfu of MDR-EAEC Control

Enumeration of MDR-EAEC was performed as described in earlier experiments

Growth profile of MDR- EAEC co-incubated with L. plantarum (1 x 10¹⁰ cfu) and L. acidophilus (1 x 10¹⁰ cfu)

**** *||||*

Less active

Less active

Active

Infected

MDR-EAEC counts in intestine (ileum and colon) using plate count method

भाकु अनुप ICAR

MDR-EAEC counts in intestine (ileum and colon) by Real Time PCR

Our contribution

International Journal of Antimicrobial Agents 48 (2016) 265-270

Contents lists available at ScienceDirect

International Journal of Antimicrobial Agents

journal homepage: www.elsevier.com/locate/ijantimicag

Antimicrobial effects of *Lactobacillus plantarum* and *Lactobacillus acidophilus* against multidrug-resistant enteroaggregative *Escherichia coli*

CrossMark

Manesh Kumar ^a, Pankaj Dhaka ^a, Deepthi Vijay ^a, Jess Vergis ^a, Vysakh Mohan ^a, Ashok Kumar ^a, Nitin V. Kurkure ^b, Sukhadeo B. Barbuddhe ^c, S.V.S. Malik ^a, Deepak B. Rawool ^{a,*}

Division of Veterinary Public Health, Indian Veterinary Research Institute, Izzatnagar, Bareilly 243122, India
 Department of Veterinary Pathology, Nagpur Veterinary College, Maharashtra Animal Science and Fishery University, Nagpur 440006, India
 National Institute of Biotic Stress Management, Baronda, Raipur 493225, India

More studies on use of probiotics - MDR pathogens

Multi Drug Resistant Pathogen (MDR)	Probiotics	Reference
E. coli, MRSA, S. agalactiae	L. fermentum, L. plantarum, L. acidophilus, L. rhamnosus, L. gasseri	Pradhan <i>et al.</i> , 2011
VRE	L. rhamnosus GG	Szachta <i>et al.</i> , 2011
Pseudomonas aeruginosa, Acinetobacter baumannii	Bifidobacterium adolescentis, B. longum, B. pseudocatenulatum	Lee <i>et al.</i> , 2013
A. baumannii, E. coli and S. aureus	L. jensenii and L. rhamnosus	Sambanthamoorthy et al., 2014
P. aeruginosa	Lactobacillus, Saccharomyces, Bifidobacterium	Machairas <i>et al.</i> , 2015
Acinetobacter baumannii	<i>B. breve</i> strain Yakult (BbY)	Asahara et al., 2016
E. coli	B. longum, L. plantarum, L. helveticus, L. rhamnosus	Abdelhamid et al., 2018

More studies on use of probiotics - MDR pathogens

Multi Drug Resistant Pathogen (MDR)	Probiotics	Reference
E. hormaechei, K. pneumoniae, A. baumannii	Lactobacillus reuteri	Chan <i>et al.</i> , 2018
S. Enterica Serovar Heidelberg	Propionibacterium freudenreichii	Nair and Johny, 2018
Methicillin-resistant <i>S.</i> <i>aureus</i> (MRSA) and vancomycin- resistant <i>Enterococcus</i> (VRE)	Marine actinomycetes	Norouzi <i>et al.</i> , 2018
Methicillin-resistant <i>S.</i> <i>aureus</i> (MRSA) and vancomycin- resistant <i>Enterococcus</i> (VRE)	Marine actinomycetes	Sikorska and Smoragiewicz, 2013; Norouzi <i>et al.</i> , 2018
P. aeruginosa	Lactobacillus plantarum 299v	Moghadam <i>et al.</i> , 2018

Advantages and Limitations of Probiotics

Advantages

✓ Growth promoter and Immune modulation

✓ Effective against antibiotic-associated *Clostridium difficile*associated and traveler's diarrhea), lactose intolerance, vaginal infections

✓ Produces vitamin B_{12} , vitamin K_2 , butyrate, various enzymes that destroy harmful bacteria

- \checkmark Stimulating secretion of IgA and T-cells
- ✓ Maintain or improve commensal gut bacterial population, lowering pH and improving mucosal immunity
- \checkmark Promoting digestion, nutrient absorption and bioavailability
- \checkmark Prevent pathogen colonization in GIT

✓ Have direct antagonistic activity against varied number of resistant strains.

✓ Prevent relapse of Crohn's disease in human

Limitations

✓ Complex FDA regulatory process

✓ May be harmful when consumed in large quantity

✓ May be harmful to immunocompromised humans

 ✓ Chance of acquiring mobile elements responsible for spread of antimicrobial resistance Trafalska and Grzybowska, 2004; Oyetayo and Oyetayo, 2005; Besselink *et al.*, 2008; Callaway *et al.*, 2008; Gill and Prasad, 2008; Rahimi *et al.*, 2008; Reid *et al.*, 2009; Gaggìa *et al.*, 2010; Iannitti and Palmieri, 2010; Jamalifar *et al.*, 2011; Brandt, 2012; Allen *et al.*, 2014; Nami *et al.*, 2015; Varankovich *et al.*, 2015; Bomko *et al.*, 2017; Sharma *et al.*, 2018

Reference

Thank you very much for your kind attention !!

